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Nomenclature: 

C  : Damping coefficient (translational) (N.s/m) 

0C  : Damping coefficient (rotational) (N.m-s/rad) 

Cx, Cy : Damping coefficients at the end bearing along x-axis and y- axis (N.s/m) 

d : Diameter of the shaft (m) 

d1 : Diameter of the disk (m) 

e : Eccentricity of disk mass centre (m). 

Fx, Fy : Restoring force components along x , y –axes    (N)             

Fxr, Fyr : Restoring force components along xr , yr axes (N) 

g : Gravitational acceleration (m/s
2
) 

J : Moment of inertia of the disk (m
4
) 

K  : Lateral bending stiffness of the shaft at disk location (N/m) 

0K  : Rotational bending stiffness of the shaft at disk location  

Kx, Ky : End bearing stiffness along x , y- axes (N/m)            

L : Span of the horizontal cantilever shaft (m)  

m : Equivalent mass of the rotor system (kg) 

p : Natural frequency in bending (rad/s) 

rc, rk : Bearing property ratio (damping, stiffness) 

x, y : Non-rotating frame of reference (m) 

xr, yr : Rotating frame of reference (m) 

yx ,  : Velocity components along x- and y- axes directions respectively (m/s) 

rr yx  ,  : Velocity components along xr- and yr- axes directions respectively (m/s) 

          : Angular displacement at any instant of time ‘t’ (rad) 

p


     : Frequency ratio 

  : Static deflection (m)  = mg/K.= g/p
2 

  : Natural frequency in wobbling (rad/s)  

0,,  m
 : Damping ratios 

kc  ,  : Asymmetry at bearing (damping, stiffness) 
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Abstract- Rotors are principal elements of a wide variety of machineries. Early investigators had noticed the effects of 

imbalance and increasing speeds on the vibrations as the rotors operated near resonance. The modern high speed trend to 

enhance the power-to-weight ratios has rendered the study of rotor dynamics as one of upmost importance as vibration failures 

may prove disastrous. Etiology of rotor’s dynamic behaviour may often be counter-intuitive, especially when flexible systems 

with rotational asymmetry are required to operate above the primary critical speed. The intent of the present work is to 

investigate the evolution of the vibratory motion in a horizontal rotor with orthotropic flexible end constraint (bearing), both in 

the sub critical and super critical states. The analysis includes the effects of rotatory inertia, gyroscopic couple, Coriolis force 

and internal/external damping producing a four degree of freedom system and the method was experimentally validated on a 

test facility.   

Keywords: asymmetric rotor bearing systems; gyroscopic couple; rotatory inertia; coriolis force; supercritical response; 

instability. 
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   :  Acceleration time (s). 

   : Angular velocity at any instant of time ‘t’ (rad/s) 

cr  : Critical speed (rad/s) 

pe : Effective natural frequency (combining dissimilar stiffness and end bearing), (Hz) 

Te : Time period corresponding to pe, (s). 

 

1. INTRODUCTION 

Resonant vibrations in rotating machineries continue to pose serious problems to the engineer as vibration failures may cause 

disaster. Study of flexural vibrations of shaft-rotor systems is a subject of current interest where high speeds can provide 

enhanced power-to-weight ratio. The natural frequencies of a rotating machine actually differ from non-rotating ones because 

of the gyroscopic effect. High amplitude vibrations caused by rotation often occur at frequencies equal to the natural 

frequency of the rotor, called the critical speed and also at its submultiples and multiples [1,2,3,4,19]. 

An accurate prediction of dynamic behaviour is immensely valuable to the designer of modern high speed rotating 

machinery. To achieve this, a comprehensive mathematical model has to be constructed. Many rotors are symmetric and 

nearly rigid making the task of modeling and analysis somewhat simpler. Some rotors, on the other hand, are asymmetric and 

flexible; with the result, much complication is introduced in building the mathematical model and its analysis. Further, high 

speed flexible systems with large disks set up gyroscopic and rotatory inertia couples that introduce new and complex 

phenomena.  

In general, the question of critical speeds of rotor systems has been addressed by many authors [5, 19-21].  The frequency 

equations and critical speeds of a straight circular rotor were obtained by Eshleman and Eubanks [5]
 
who included the 

transverse shear, rotatory inertia and gyroscopic moments together with continuous shaft effects (distributed mass and 

elasticity) in their model.  Research on rotor dynamics over the past three decades has been on improved models with the 

expedient of finite element formulation in some cases [6,8-12]. Ozguven and Ozkan [8] , while considering the combined 

effect of shear deformation and internal damping, showed that requisite damping can suppress instability in homogeneous 

rotor-bearing systems. 

The question of assessing dynamics stability becomes essential for ensuring better designs of rotor-systems and operational 

safety. The effects of bearing and shaft asymmetries on the stability of rotor has been reported by Ganesan [9]. Wettergren 

and Olsson [10] considered a horizontal rotor with a flexible shaft supported in flexible bearings and found that major 

instabilities appear near the imbalance resonance and remarked that the resonances due to gravity near one half of the major 

critical could be reduced with enhanced material damping. Rajalingham et al [15] considered the influence of external 

damping on the stability and dynamic response of single disk horizontal rotors with anisotropic bending stiffness 

characteristics 

Campos et.al [19]
 
reported a study on the dynamics of a Jeffcott rotor through Bond Graph  formulation which provides for 

modelling of various nonlinear and multi-energetic systems. They validated their results through experiments on a carefully 

designed test setup obtaining a good agreement between the model predictions and the measured response 

Chang and Cheng [22] considered the dynamics of a rotating shaft-disk system and  particularly addressed the question of 

instability. They determined the stability criteria based on linear equations of motion and obtained analytical expressions for 

the radius of synchronous whirling. Chattoraj et. al [11] considered a highly flexible vertical Jeffcott rotor and noted 

interesting  evolution of  whirl when coriolis forces are included. Here, the phase-portraits did not settle on a single 

trajectory.   

Very recently, Tammi [20] has reported active vibration control methods with a cascaded configuration controller employing 

inner feedback and outer feed forward loops to filter a sinusoidal reference signal in such a way that it acts against the 

disturbing rotor motions. The arrangement worked successfully with electromagnetic actuators built by modifying a magnetic 

bearing. The work is very elaborate where several control algorithms were tried. A good vibration damping performance was 

achieved over the entire operating range. 

 Panovko [12] has discussed several important aspects of rotor dynamics in his text book on Elastic Vibrations. Biezeno and 

Grammel [13] have produced a masterpiece work on rotor dynamics and more recently, Chong-Won-Lee [14] has on paper a 

fine reference manual on the subject. Den Hartog [18] in his text book on Mechanical Vibrations gives an excellent account 

of rotor dynamics especially clarifying the physics of gyroscopic couple.  

In the present work, the authors consider the practical case of an overhanging high inertia horizontal rotor on a flexible 

isotropic shaft with an asymmetric end bearing to provide distinctly different elastic and damping characteristics in two fixed 

reference directions. The analysis includes the effects of rotatory inertia, gyroscopic couple, coriolis force and internal and 

external damping giving rise to a four degree-of-freedom model whose equations of motion are a set of ordinary differential 

equations with variable coefficients.  

  

2. DEVELOPMENT OF A PHYSICAL MODEL 

The phenomenology relating to rotor dynamics is complex and often counter-intuitive. Despite much study by several 

investigators over the past century lacunae still exist.  The intent of this work is to develop a model capable of explicating the 
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evolution of the whirl phenomenon and instability. The most common event of whirl - the synchronous whirl – forms the 

subject matter of the current investigation. A single disk on a flexible, horizontal cantilever shaft with a resilient orthotropic 

constraint (bearing) at the free end constitutes the proposed physical model and this configuration can accommodate the 

following notable actions: 

Centrifugal forces due to imbalance, (2) Coriolis force, (3) Gyroscopic couple, (4) Elastic and Dissipative forces, (5) Gravity 

force 

              
Fig.1: The Cantilever Rotor Model          Fig.2: Fixed and Rotating Reference Frames 

 

 
Fig.3(a, b): Projection of Slope-Deflection Pattern on rotating reference planes 

 

Figure1 shows the overhung (cantilever) rotor model where the free end of the shaft is constrained by an orthotropic bearing 

providing additional elastic and dissipative supporting forces with fixed directions, while the first four of the above five types 

of actions rotate with the shaft-rotor system. The fifth force (i.e. gravity) also has a fixed direction. The energy to sustain the 

motion is provided by a motor with high inertia rotating parts so as to form a uniform speed source which is not readily 

affected by the kinetics of the rotor. In a large majority of cases, synchronous whirl has been reported by past observers [22]. 

In our model we then consider the rotor disk to execute a common rotational velocity with the shaft. For ease of keeping 

track of the various actions we propose a stationary (x, y) and a rotating (xr,yr) Reference Frames as shown in fig.2. During 

the process of vibrations, the shaft laterally deflects in the xr-z and yr-z planes also producing the corresponding slopes  ψxr 

and ψyr as shown in fig.3(a, b).  

The co-ordinates of ‘G’ (the centre of mass of the disk) are expressible both in terms of the fixed and the rotating Reference 

Frames of fig.2. The following two transformation equations relate these two co-ordinate systems: 
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The equations of motion are formulated in the rotating Reference Frames (fig.2) for two reasons: first – to conveniently 

observe the effects of Coriolis, gyroscopic and elastic forces   which rotate with the rotor system and second – to have 

expressions for the moment of inertia terms, especially for asymmetric rotors, as time-independent. 

 
Fig.4: Forces and Moments on the Rotor System 
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Figure 4 shows the end view of the rotor system where O corresponds with the bearing centre line and S is the deflected shaft 

centre (OS = shaft deflection) where G represents the centre of mass of the disk (SG = eccentricity). The angle θ = ωt for a 

steady synchronous whirl where ω represents the constant rotary speed of the shaft. Fig.4 lists all the action components 

which will help us to formulate the four equations of motion (two each for lateral deflection and slope). It is notable that 

xrJ  and 
yrJ are the rotatory inertia terms and following Den Hartog [18] 2 xrJ  and 2 yrJ   are recognized as 

gyroscopic actions, valid for small slopes. For large slope angles the gyroscopic terms shall be replaced by 

)2sin5.0sin2(2

xrxrJ   and )2sin5.0sin2(2

yryrJ   in the xr – z and yr – z planes respectively.  

Before proceeding with the mathematical formulation it will be instructive to note that the critical speed of a lumped mass 

cantilever shaft considering forward precession (gyroscopic effect), is given by: 
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This speed is obviously higher than the natural frequency, p = 
3

3
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EI  of the non-rotating cantilever. 

3. FORMULATION 

We assume that the drive motor has the requisite capacity to maintain a constant spin in the rotor eliminating the need for 

tracking the torsional motion. 

Applying d’ Alembert’s principle under dynamics equilibrium and referring to fig.4, the equations of motion for the system 

(small slopes) can be written as follows in the rotating reference frames:  
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where:  Tyrxrrr yxq  , is the generalized coordinates vector of the rotor,  

f = f(t)+ h  Taam  cossincossin 11    

 Teaeaeem  sin.cos.sin.cos. 2

1

2

1

22   

is an action vector composed of gravity, and centrifugal action due to eccentricity, where t   for uniform synchronous 

whirl and  defines the angular position of the mass centre of the disk relative to the rotating coordinate system. 

Further,  

2cos11 nm KKK  , 2sin12 nKK  , 2cos11 nm CCC  , 2sin12 nCC  ,  
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2
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2
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2

1 and 
21,aa are coefficients  such that :   

force   a1  =   moment equivalent of force ( producing slope) and  moment   a2  =  force equivalent of moment (producing 

deflection). 

Equation (4) can be expanded to the following set after some mathematics: 
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We next define eight state variables: xr, yr, yryrxrxryrxrryrrxr yvxv    ,,,,, . 

Now, equations (5) to (8) can be conveniently written as eight first order differential equations, compressed into the 

following matrix form: 

uHsFs }{}]{[}{ 
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Elements αij of the 8   8 coefficient matrix are embedded in equations (5) to (8). 

These first order differential equations are formidable in structure but they can be numerically handled by appropriate 

numerical algorithms.  

 

4. EXPERIMENTAL  SETUP: : THE ROTOR TEST FACILITY 

The present investigation is intended to provide an experimentally validated mathematical model of a flexible shaft-rotor 

system that shall be of service in explicating the evolution and quizzical nature of the whirl phenomenon while positively 

aiding the design of high speed machines; accordingly, an instrumented test facility has been designed and constructed.  The 

rotor test facility is shown in fig.5 (photograph).  This is a system with a single isotropic disk mounted at the end of a circular 

cantilever shaft where high deflection and slope can exist. Further, the free end of the cantilever is subjected to constraints 

provided by an orthotropic bearing of changeable asymmetry ratio. The disk is carefully balanced on the shaft and calculated 

amount of unbalance masses could be added on a pitch circle (50 mm. diameter). The cantilever end is supported on a pair of 

identical rigid ball bearings while the free end constraint is provided through a self-aligning ball bearing. The asymmetry 

parameters c and k could be altered by changing the suspension springs. The driving motor is D.C. permanent magnet type 

with the rotatory inertia of the armature enhanced (about 12 times) by the addition of a balanced flywheel at the drive end. 

This provides a fairly uniform speed drive system. The motor drives the shaft through a flexible coupling to compensate for 

any unavoidable alignment error. The speed variation is achieved by an electronic controller which can control the motor 

speed in the range of 30 rpm to 6000 rpm and the speed is measured by a digital photo tachometer (laser type). The rotor’s 

lateral motion is tracked by an orthogonal pair of contactless velocity sensors aligned on a rigid support. The sensor output is 

conditioned by a signal conditioner (filter and integrator) and sent to the cathode ray oscilloscope for display which were 

transferred to computer through NI DAQ interface. An arrestor, serving as an initializer of the state variables and time, can be 
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fitted at the flexible bearing end to prevent the vibratory motion of the rotor system during spin up. After achieving the 

required speed, the arrestor can be released so that normal vibrational dynamics is realized.  

 

 
 

Table-1  provides the test data for the rotor system. 

Table-1: Data for the Rotor system 

Features of the Set-up Disk1 Disk2 

Diameter of disk, d1 (mm) 100 100 

Thickness of disk, t (mm) 5 2.5 

Material of disk C20 Steel C20 Steel 

Mass of disk, md (kg) 0.308 0.157 

Equivalent mass of Shaft-Disk system, m (kg) 0.315 0.164 

Lateral Bending Stiffness of Shaft, K (N/m) 2301 2301 

Rotational Stiffness of Shaft (wobble),K0 (N-m/rad) 30.68 30.68 

M.I of Disk (diametral), J (kgm
2
) 19.25 x 10

-5
 9.8125 x 10

-5
 

Natural Frequency (bending), p (rad/s) 85.5 116 

Natural Frequency (wobble), q (rad/s) 399.2 559.2 

Horizontal Stiffness of Bearing, Kx (N/m) 2200 2200 

Horizontal stiffness of Bearing, Ky N/m) 11000 11000 

Centre of Gravity offset, e (mm) 0.50 0.50 

 

 

 

  Features of the Set-up Shaft 

Diameter of Shaft, d (mm) 5 

Length of Shaft, L (mm) 200 

Material of Shaft C20 Steel 

Mass of shaft, ms (kg) 0.0028 

 

5. RESULTS AND DISCUSSIONS 

In the following illustrations we represent cases of sub-critical (at γ = 0.35 and 0.36) to supercritical (at γ = 1.01) rotors. The 

measured damping ratios is small (close to 0.01) which is typical for material damping, and all initial values of the state 

variables are kept zero and the eccentricity e = 0.5 mm. Computer simulation is implemented using Runge-Kutta 4
th

 order 

algorithms and finally results are validated through experimentations. 

 

                     
(a) Displacement-time plot                        (b) Phase portrait 
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                                               (c) Displacement-time plot                             (d) Phase portrait 

Fig.6 : Dynamic Response for 5 mm thick disk 

 

                  
(a) Displacement-time plot                        (b) Phase portrait 

                
(c) Displacement-time plot                        (d) Phase portrait 

Fig.7: Dynamic Response for 2.5 mm thick disk 

 

Figure 6 to 7 represent the displacement-time and phase plane plots (phase portraits) for two separate disk sizes (5mm and 

2.5mm).  Fig.6(b) shows the evolution of the phase plane plot for the motion of the shaft centre along the rotating xr-axis with 

the frequency ratio γ = 0.36 (sub-critical), damping ratio  =m =0= 0.01 and μc = μk = 0.67. The windings on 

the plot are due to a combination of harmonics at frequencies roughly conforming to p-and p+. The displacement-

time graph, fig.6(a), clearly shows the presence of this multiple frequency oscillations which eventually settle to one of single 

frequency due to damping of the transient at t > 50Te . The phase portrait tends to a near elliptic band at higher time 

values which corroborates the persistence of the multiple frequency terms. Upon varying the initial conditions, it was 

observed that phase portraits settled to this band in the limit. The motion is stable. 

In fig.6(c, d) a super critical (γ = 2) state in the verge of instability is described. The phase-plane trajectory settles to a nearly 

elliptic (band) shape. The time history shows a modulated wave shape which could be produced by two interfering harmonics 

of frequencies 2.5pe and 3pe whose conformity with p, and p (i.e, pe, 2pe and 3pe) is not found and the lowest 

frequency term is absent. 

Figure 7(a, b, c, d) pertaining to 2.5 mm thick disk maintain the corresponding features of those for the 5mm thick disk. 

While constructing fig.7 to 7, the xr-axis has been chosen for reference. If the yr-axis were selected, like results, displaced in 

phase, would be obtained.  

Comparison of the simulation results with the oscillograms (experimental results) shows a fair deal of correspondence which 

serve to validate the evolution of the motion pattern. Some departures are observable but they could not be refined as 

mechanical production (experimental set up) and instrumentation errors are inevitable, despite best care. We may say that the 

theory (i.e, model) is validated here. 

Having studied some typical subcritical and supercritical responses described above it would be proper to address the 

question of stability of the system. The equations of motion of the system (eq.5 to eq.8) should answer this question, but the 

task of handling them analytically is far from simple because of their formidable structure. We have thus resorted to laborious 

scanning of the response over a range of 0.1p ≤ ≤p using a very fine time step (approximately 10
-4

 times the shortest 

wave length of the vibrational motion). A non-dimensional deflection 









maxrx was tabulated against the non-dimensional 

frequency and the results were plotted in fig.8 and fig.9. 
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Fig.8 & Fig.9: Stability Chart for a Rotor with Symmetric and Asymmetric end bearing and Gyro effect (5 mm & 2.5 mm 

thick disk) 

 

In stability charts for the two disks (fig.8 and 9), the asymmetry effect of the flexible end bearing are considered for two 

extreme cases:  first, a high value of the asymmetry parameter μc = μk = 2/3(≈ 0.67) is shown in solid lines where μc = μk = 

0.01 and d1 =100 mm and second, a case of zero asymmetry is represented keeping all other parameters unchanged. In the 

former case in fig.8, a region spanning over 0.8 < γ < 1.2 is a large amplitude zone containing   the resonance location. A 

narrow zone of high amplitude, however, is observed in the latter case. With further increase of γ the transient response 

becomes unstable at γ> 2.3 where damping gives no benefit. For operational safety, we propose a limiting non-dimensional 

deflection  










maxrx  = 10. Compared to symmetrical end bearings, a wider frequency band of high amplitude is observed in 

the high asymmetry case.  

Figure 9 has features similar to fig.8. In this case, only the disk thickness is changed to 2.5mm with a consequent rise in the 

natural frequency. No significant change in the shape of the stability boundaries is observable. 

The rotor, operating beyond critical speed, has to cross this dangerous high amplitude zone with a large enough acceleration 

(or deceleration) so that the vibration amplitudes are not allowed to buildup violently and are made to stay put within a 

tolerable limit. 

To determine the acceptable value of acceleration/deceleration, a study was made to track the variation of the normalized 

maximum displacement (













max,
log.20

rx
N , in dB) with the non-dimensional acceleration time















pT

 . 

     
Fig.10: Variation of maximum displacement                    Fig.11: Variation of maximum displacement 

(for 5 mm disk), near critical zone            (for 2.5 mm disk), near critical zone 

 

Figure 10 and fig. 11 depict the effect of uniform acceleration time τ to cross the critical resonance zone (from 0.8pe to 1.2pe) 

on the vibration amplitude for the asymmetric disk. Fig.10 shows a rapidly rising Nδ value that moves from 20 dB at τ =  

0.25Tp  to 62.6 dB at τ  = 0.75Tp  where Tp is the time period of its oscillation. Fig. 11 shows the variation of xr, max with 

time, τ for the 2.5mm disk where the peak value of xr, max reads 62 dB. In both the disks, the critical zone should be crossed 

within ¼   natural oscillation (τ  = 0.25Tp). Considering the large (2 krad/s
2
 and 1 krad/s

2 
for 5 mm and 2.5 mm disks 

respectively) value of the required acceleration, a deflection arrestor must be provided to ease the process transition through 

the critical zone.   
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6. CONCLUSIONS 

The present study considers a rather flexible cantilever rotor as flexibility can enhance power-to-weight ratio. A fairly 

compliant orthotropic bearing at the free end is employed to reveal the effects of anisotropic support parameters. The resilient 

end support has been found to raise the range of stable operation speeds.  

The phase-plane trajectories (Figs.6(b, d) and 7(b, d)) show a common feature: at the sub-critical and supercritical levels they 

appear as limit cycles. This is, however, not true as the same trajectory is never retraced and a band is formed instead to 

which the final responses are drawn when started with different initial conditions. 

Operations near the critical speed (γ = 1), is observed to be dangerous during experimentation. In order to take the flexible 

rotor to its supercritical operating speed, the precarious critical zone should be crossed within ½ natural oscillation or 0.5Te 

that requires an average acceleration of 2300 rad/s
2 

and in the current test setup a power boost (for 20 ms) of about 110 W 

becomes necessary.  Here the maximum vibration amplitude can stay within a small value of 1.04 mm (fig.10). The same 

requirement is also valid for deceleration.  

Doubtlessly, the required acceleration for transition through the critical zone is very high, and for a limited power drive 

motor (50 W) in the present setup a 250 % short term power boost would be required. A displacement arrestor at the end 

bearing is a smarter alternative for speeding up to the supercritical operating point. 

The inclusion of gyroscopic couple, rotatory inertia and Coriolis force raises the degrees of freedom of the rotor to four and 

the equations are formidable in structure. It is hoped that this could capture the features of the dynamics more 

comprehensively. A computer simulation became necessary and the theory has been validated by fairly agreeing 

experimental results. The study shows that rotors on asymmetric (orthotropic) bearings have superior stability characteristics. 

In the chosen example they can be run very smoothly in the supercritical range, 1.2 < γ < 2.2. Nevertheless, Symmetric 

Bearings produce a lower bandwidth resonance zone which is easier to cross in acceleration/deceleration and are, therefore, 

preferable. 
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